BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Rabu, 09 Desember 2009

Dalam pengoperasiannya, suatu instalasi GenSet memerlukan sistem pendukung agar dapat bekerja dengan baik dan tanpa mengalami gangguan. Secara umum sistem-sistem pendukung tersebut dibagi menjadi 3 bagian, yaitu:
1. Sistem Pelumasan
2. Sistem Bahan Bakar
3. Sistem Pendinginan

1. Sistem Pelumasan

Untuk mengurangi getaran antara bagian-bagian yang bergerak dan untuk membuang panas, maka semua bearing dan dinding dalam dari tabung-tabung silinder diberi minyak pelumas.


Cara Kerja Sistem Pelumasan

Minyak tersebut dihisap dari bak minyak 1 oleh pompa minyak 2 dan disalurkan dengan tekanan ke saluran-saluran pembagi setelah terlebih dahulu melewati sistem pendingin dan saringan minyak pelumas. Dari saluran-saluran pembagi ini, minyak pelumas tersebut disalurkan sampai pada tempat kedudukan bearing-bearing dari poros engkol, poros jungkat dan ayunan-ayunan. Saluran yang lain memberi minyak pelumas kepada sprayer atau nozzle penyemperot yang menyemprotkannya ke dinding dalam dari piston sebagai pendingin. Minyak pelumas yang memercik dari bearing utama dan bearing ujung besar (bearing putar) melumasi dinding dalam dari tabung- tabung silinder.
Minyak pelumas yang mengalir dari tempat-tempat pelumasan kemudian kembali kedalam bak minyak lagi melalui saluran kembali dan kemudian dihisap oleh pompa minyak untuk disalurkan kembali dan begitu seterusnya.

Sistem-Sistem Pendukung pada GenSet
Gambar 1. Sistem Pelumasan
1. Bak minyak
2. Pompa pelumas
3. Pompa minyak pendingin
4. Pipa hisap
5. Pendingin minyak pelumas
6. Bypass-untuk pendingin
7. Saringan minyak pelumas
8. Katup by-pass untuk saringan
9. Pipa pembagi
10. Bearing poros engkol (lager duduk)
11. Bearing ujung besar (lager putar)
12. Bearing poros-bubungan
13. Sprayer atau nozzle penyemprot untuk pendinginan piston
14. Piston
15. Pengetuk tangkai
16. Tangkai penolak
17. Ayunan
18. Pemadat udara (sistem Turbine gas)
19. Pipa ke pipa penyemprot
20. Saluran pengembalian

Read More ..


Sinkronisasi

Sinkronisasi adalah suatu cara untuk menghubungkan dua sumber atau beban Arus Bolak-Balik (AC). Sumber AC tersebut antara lain generator dan beban adalah transformer yang akan digabungkan atau diparalel dengan tujuan untuk meningkatkan keandalan dan kapasitas sistem tenaga listrik, seperti telah dijelaskan pada artikel “metode paralel generator sinkron”


Pada gambar 1 diperlihatkan 2 buah generator pada satu busbar, generator #1 dalam keadaan terbuka dan akan diparalel atau disinkronkan ke busbar dimana generator #2 telah masuk (telah sinkron dengan jaringan/busbar).


Gambar 1. 2 generator dalam satu busbar.

Untuk dapat terjadi proses sinkronisasi generator #1 ke busbar, maka dibutuhkan parameter yang harus terpenuhi oleh generator #1, yaitu:
1. Nilai Tegangan yang sama antara tegangan Generator #1 dengan tegangan busbar.
2. Nilai Frekuensi yang sama antara Generator #1 dan busbar, di Indonesia digunakan frekuensi 50 Hz.
3. Sudut phase yang sama, vector sudut phase dari generator #1 harus sama dengan vector sudut pase pada busbar.
4. Phase Sequence yang sama, terminal RST generator #1 harus dihubungkan dengan terminal RST busbar.

Untuk memenuhi persyaratan sinkron tersebut dilakukan dengan cara mengatur kecepatan putar shaft generator dan tegangan keluaran generator. Circuit Breaker (PMT) dari Generator #1 dapat dimasukan jika persyaratan sinkron terpenuhi

Jenis Sinkronisasi

Seperti telah dijelaskan diawal, bahwa sinkronisasi adalah proses untuk menyamakan tegangan, frekuensi, sudut phase dan sequence phase antara 2 sumber daya AC. Maka berdasarkan arah atau susunan peralatan pada sistem tenaga listrik, sinkronisasi dibagi menjadi 2 jenis, yaitu:

1. Forward Synchronization (sinkronisasi maju), yaitu proses sinkronisasi generator kedalam sistem atau busbar.


2. reverse Synchronization atau backward synchronization (sinkronisasi terbalik), biasanya terjadi pada sistem tenaga listrik disuatu pabrik, dimana suatu jaringan suplai akan digabungkan kedalam suatu jaringan sistem atau busbar yang ada. Pada kondisi ini tidak dimungkinkan untuk mengatur parameter sinkron pada sisi incoming (jaringan yang akan disinkronkan), yang terpenting CB (PMT) dari beban-beban pada jaringan suplai (grid supply) dalam keadaan terbuka.



Peralatan Instrumentasi Untuk Proses Sinkronisasi

Double Voltmeter
Adalah voltmeter dengan tampilan 2 pengukuran tegangan yaitu tegangan dari peralatan yang akan disinkron (generator) dan tegangan sistem yang bekerja simultan.


Double Frequency Meter
Menampilkan nilai frekuensi dari kedua sumber AC.


Synchroscope
Alat yang digunakan untuk mengetahui sudut phase dari kedua sumber. Terdiri dari jarum berputar (rotating pointer), jika jarum berputar tersebut berada pada posisi tepat di jam 12, maka sudut phase dari kedua sumber sama dengan nol dan dapat dikatakan kedua sumber “sefase”, dalam sudut phase yang sama.


Phase Sequence Indikator
Alat ini sama dengan yang digunakan untuk mengetahui sequence phase dari motor induksi. Dilengkapi dengan jarum berputar (rotating pointer), jika jarum berputar searah jarum jam, maka dapat dikatakan memiliki sequence positif RST dan jika berputar sebaliknya ber-sequence negative atau RTS.


Namun biasanya peralatan Phase Sequence tidak diikut sertakan di panel sinkron.

Semoga bermanfaat, Hage – http://dunia-listrik.blogspot.com

Read More ..

Senin, 07 Desember 2009


Prinsip Kerja Transformator

Komponen Transformator (trafo)

Transformator (trafo) adalah alat yang digunakan untuk menaikkan atau menurunkan tegangan bolak-balik (AC). Transformator terdiri dari 3 komponen pokok yaitu: kumparan pertama (primer) yang bertindak sebagai input, kumparan kedua (skunder) yang bertindak sebagai output, dan inti besi yang berfungsi untuk memperkuat medan magnet yang dihasilkan.

Prinsip Kerja Transformator

Prinsip kerja dari sebuah transformator adalah sebagai berikut. Ketika Kumparan primer dihubungkan dengan sumber tegangan bolak-balik, perubahan arus listrik pada kumparan primer menimbulkan medan magnet yang berubah. Medan magnet yang berubah diperkuat oleh adanya inti besi dan dihantarkan inti besi ke kumparan sekunder, sehingga pada ujung-ujung kumparan sekunder akan timbul ggl induksi. Efek ini dinamakan induktansi timbal-balik (mutual inductance).
Pada skema transformator di samping, ketika arus listrik dari sumber tegangan yang mengalir pada kumparan primer berbalik arah (berubah polaritasnya) medan magnet yang dihasilkan akan berubah arah sehingga arus listrik yang dihasilkan pada kumparan sekunder akan berubah polaritasnya.

Read More ..